Ullrich R, Nüske J, Scheibner K, Spantzel J, Hofrichter M. Novel Haloperoxidase from the Agaric Basidiomycete Agrocybe aegerita Oxidizes Aryl Alcohols and Aldehydes. Appl Environ Microbiol [Internet]. 2004 [cited 2019 Jun 3];70(8):4575–81. Available from: http://aem.asm.org/
Gutiérrez A, Babot ED, Ullrich R, Hofrichter M, Martínez AT, del Río JC. Regioselective oxygenation of fatty acids, fatty alcohols and other aliphatic compounds by a basidiomycete heme-thiolate peroxidase. Arch Biochem Biophys [Internet]. 2011 Oct 1 [cited 2019 Jun 3];514(1–2):33–43. Available from: https://www.sciencedirect.com/science/article/abs/pii/S000398611100289X
Hofrichter M, Ullrich R. Oxidations catalyzed by fungal peroxygenases. Curr Opin Chem Biol [Internet]. 2014 Apr 1 [cited 2019 Jun 3];19:116–25. Available from: https://www.sciencedirect.com/science/article/abs/pii/S1367593114000106
Peter S, Kinne M, Wang X, Ullrich R, Kayser G, Groves JT, et al. Selective hydroxylation of alkanes by an extracellular fungal peroxygenase. FEBS J [Internet]. 2011 Oct 1 [cited 2019 Jun 3];278(19):3667–75. Available from: https://febs.onlinelibrary.wiley.com/doi/abs/10.1111/j.1742-4658.2011.08285.x%4010.1002/%28ISSN%291742-4658%28CAT%29VirtualIssues%28VI%29MolecularEnzymology2012
Bordeaux M, Galarneau A, Drone J. Catalytic, Mild, and Selective Oxyfunctionalization of Linear Alkanes: Current Challenges. Angew Chemie Int Ed [Internet]. 2012 Oct 22 [cited 2018 Jul 27];51(43):10712–23. Available from: http://www.ncbi.nlm.nih.gov/pubmed/22996726
Hofrichter M, Kellner H, Pecyna MJ, Ullrich R. Fungal Unspecific Peroxygenases: Heme-Thiolate Proteins That Combine Peroxidase and Cytochrome P450 Properties. In: Advances in experimental medicine and biology [Internet]. 2015 [cited 2018 Jun 19]. p. 341–68. Available from: http://www.ncbi.nlm.nih.gov/pubmed/26002742
Pecyna MJ, Ullrich R, Bittner B, Clemens A, Scheibner K, Schubert R, et al. Molecular characterization of aromatic peroxygenase from Agrocybe aegerita. Appl Microbiol Biotechnol [Internet]. 2009 Oct 12 [cited 2018 Jun 19];84(5):885–97. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19434406
Faiza M, Huang S, Lan D, Wang Y. New insights on unspecific peroxygenases?: superfamily reclassification and evolution. 2019;1–19.
Fischer M, Pleiss J. The Lipase Engineering Database: a navigation and analysis tool for protein families. Nucleic Acids Res [Internet]. 2003 Jan 1 [cited 2019 Jul 9];31(1):319–21. Available from: http://www.ncbi.nlm.nih.gov/pubmed/12520012
Passardi F, Theiler G, Zamocky M, Cosio C, Rouhier N, Teixera F, et al. PeroxiBase: The peroxidase database. Phytochemistry [Internet]. 2007 Jun [cited 2019 Jul 9];68(12):1605–11. Available from: http://www.ncbi.nlm.nih.gov/pubmed/17544465
Rawlings ND, Waller M, Barrett AJ, Bateman A. MEROPS?: the database of proteolytic enzymes, their substrates and inhibitors. Nucleic Acids Res [Internet]. 2014 Jan 1 [cited 2019 Jul 10];42(D1):D503–9. Available from: https://academic.oup.com/nar/article-lookup/doi/10.1093/nar/gkt953
Schomburg I, Chang A, Hofmann O, Ebeling C, Ehrentreich F, Schomburg D. BRENDA: a resource for enzyme data and metabolic information. Trends Biochem Sci [Internet]. 2002 Jan 1 [cited 2019 Jul 10];27(1):54–6. Available from: https://www.sciencedirect.com/science/article/abs/pii/S0968000401020278
Kersey PJ, Allen JE, Allot A, Barba M, Boddu S, Bolt BJ, et al. Ensembl Genomes 2018: an integrated omics infrastructure for non-vertebrate species. Nucleic Acids Res [Internet]. 2018 Jan 4 [cited 2018 Jul 10];46(D1):D802–8. Available from: http://academic.oup.com/nar/article/46/D1/D802/4577569
Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol [Internet]. 2015 [cited 2018 Jun 19];33(7):1870–4. Available from: https://www.megasoftware.net/pdfs/KumarStecher16.pdf
Whelan S, Goldman N. A General Empirical Model of Protein Evolution Derived from Multiple Protein Families Using a Maximum-Likelihood Approach. Mol Biol Evol [Internet]. 2001 May 1 [cited 2019 Jun 4];18(5):691–9. Available from: https://academic.oup.com/mbe/article-lookup/doi/10.1093/oxfordjournals.molbev.a003851
Darriba D, Taboada GL, Doallo R, Posada D. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics [Internet]. 2011 Apr 15 [cited 2018 Dec 11];27(8):1164–5. Available from: https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btr088
Sievers F, Wilm A, Dineen D, Gibson TJ, Karplus K, Li W, et al. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Mol Syst Biol [Internet]. 2014 Apr 16 [cited 2019 Jun 7];7(1):539–539. Available from: http://www.ncbi.nlm.nih.gov/pubmed/21988835
Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, et al. Clustal W and Clustal X version 2.0. Bioinformatics [Internet]. 2007 Nov 1 [cited 2019 Jun 7];23(21):2947–8. Available from: https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btm404
Li W, Godzik A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics [Internet]. 2006 Jul 1 [cited 2018 Jun 19];22(13):1658–9. Available from: http://www.ncbi.nlm.nih.gov/pubmed/16731699
Dongen S van. Graph Clustering by Flow Simulation. University of Utrecht; 2000.